FINANCIAL
TIMES

Practical Cloud Native:
what works, what doesn’t

SETELRAEUS
Technical Director, Operations & Reliability
@sarahjwells

FINANCIAL
TIMES

Practical Cloud Native:
what works, what doesn’t

SETELRAEUS
Technical Director, Operations & Reliability
@sarahjwells

L

Blankfein announces departure
as Goldman unveils profit surge

NCIAL TIMES

FT

Cloud Native means building
systems that benefit from the
cloud rather than just running on it

Moving to the cloud

A ‘lift and shift’ means moving things ‘as they are’

FT

Moving to the cloud

A ‘lift and shift’ gives you

e Someone else doing the infrastructure work

FT

Moving to the cloud

A ‘lift and shift’ gives you
e Someone else doing the infrastructure work

e Quicker provisioning

FT

B Hardware

o N = ...

" Deploy

zorz. | i
B Release Mgt
B Public DNS

oo I =

2014

0 30 60 90 120

Elapsed time (days)

FT

Moving to the cloud

A ‘lift and shift’ gives you
e Someone else doing the infrastructure work
e Quicker provisioning

e Easy scaling

FT

Moving to the cloud

A ‘lift and shift’ gives you

e Someone else doing the infrastructure work
e Quicker provisioning

e Easy scaling

e More accurate cost attribution

FT

Going further gives you more

FT

The cloud native approach

e Continuous delivery

FT

The cloud native approach

e Continuous delivery

e Microservices

FT

The cloud native approach

e Continuous delivery
e Microservices

e Containers and orchestration

FT

The cloud native approach

e Continuous delivery
e Microservices

e Containers and orchestration

FT

The cloud native approach

e Continuous delivery

e Microservices

e Containers and orchestration

e X-as-a-service (PaaS, DaaS, SaaS)

FT

The cloud native approach

e Continuous delivery

e Microservices

e Containers and orchestration

e X-as-a-service (PaaS, DaaS, SaaS)

FT

Why cloud native?

FT

THE SCIENCE OF DEVOPS

ACCELERATE

Building and Scaling High Performing
Technology Organizations

Nicole Forsgren, PhD

Jez Humble and Gene Kim

Key measures:
Delivery lead time
Deployment frequency
Time to restore service
Change failure rate

FT

Cloud native done properly will
improve all these metrics

FT

Number of releases

200

175

150

I~}
a

-
o
o

~
(&

u
o

N
(&)

Mon Jan 11
2021

Wed Jan 13

Fri Jan 15

Sun Jan 17

Tue Jan 19

Thu Jan 21

Sat Jan 23

Mon Jan 25

Wed Jan 27

Fri Jan 29

Sun Jan 31

Tue Feb 2

Thu Feb 4

FT

But doing cloud native properly
means changing a lot of things

FT

1. Optimise for loose coupling

FT

2. Empower your teams

FT

3. Understand that distributed
systems have different characteristics

FT

What changes

e Deployment

e Architecture

e How you build things

e How you test things

e How you support things

e \What your organisation looks like

FT

1. Deployment

b% p j%//éoﬂ 7/«/}/] ‘%ﬂa/am \,(/(;M'é

G

CONTINUOUS
DELIVERY

Jez HUMBLE
DAvID FARLEY

o

Continuous
delivery requires
continuous
Integration

FT

No change advisory boards, no
change request forms to fill in

FT

You don’t have to choose speed or
stability - you get both!

FT

Hourly Count
@ 8
g 8

3
g

g

00 of 03 04 05 06 07 08 09 10 1 12 13 14 15 16 7 18 19 20 21 22 23

Zero downtime
deployments

FT

Separate releasing
code from
releasing
functionality

FT

2. Architecture

12 factor architectures

https:/12factor.net

FT

Use queues where you can

FT

.9
e
Authorised request POST /change-log/create with “x-api-key")

AWS API Tyk FT API
Gateway Gateway

alid JSON an
schema?

No 400 Bad Request

Validator
Yes

202 Accepted

vq—writes to—

raw Kinesis

Q
Sends notifications to Slack channels——»ﬁ h
®

Slack
consumer

FT

Transactions can’t save you

FT

Work towards eventual consistency

FT

NOTIFICATION ——P> NODE.SS —Pp ELASTICSERRCH

Our ft.com search
______________ o ____ewn instances do

NETIFATION —P N?f‘;ds —P ELAST\csenARe eve I’Yt h i N g

iIndependently

https://www.matthinchliffe.dev/2021/01/27/under-engineering-is-just-fine.htmi

FT

http://ft.com

Keep it simple

FT

SUPPORTED_BY

DELIVERED_BY

PAYS_FOR

HAS_TECH_DIRECTOR

RY_MANAGER

AS_DELIVEI

T

HAS_PRODUCT_OWNER

FT

3. How you build things

HOW COMPLEX
SYSTEMS FAIL

When complex systems fail, what does this tell us about everyday work?
Richard I. Cook explains this and more, in this classic treatise on the
nature of failure, how failure is evaluated, how failure is attributed to
proximate cause, and the resulting new understanding of safety.

1) Complex systems are
intrinsically hazardous
systems.

All of the interesting systems (e.g.,
transportation, healthcare, power
generation) are inherently and
unavoidably hazardous by the own
nature. The frequency of hazard
exposure can sometimes be changed
but the processes involved in the
system are themselves intrinsically
and irreducibly hazardous. Itis the
presence of these hazards that drives
the creation of defenses against hazard
that characterize these systems.

small, apparently innocuous failures
join to create opportunity for a systemic
accident. Each of these small failures is
necessary to cause catastrophe but only
the combination is sufficient to permit
failure. Put another way, there are many
more failure opportunities than overt
system accidents. Most initial failure
trajectories are blocked by designed
system safety components. Trajectories
that reach the operational level are
mostly blocked, usually by practitioners.

4) Complex systems contain

latent within them.

2)C dr. Y are heavily
an

The ct lexity of these systems makes
itim ible for them to run without

PN
against failure.

The high consequences of failure

lead over time to the construction

of multiple layers of defense against
failure. These defenses include
obvious technical components (e.g.
backup systems, ‘safety’ features of
equipment) and human components
(e.g, training, knowledge) but also a
variety of organizational, institutional,
and regulatory defenses (e.g., policies
and procedures, certification, work
rules, team training). The effect of thes!
measures is to provide a series of shiel
that normally divert operations away
from accidents.

3) Catastrophe requires multiple
failures - sinale point failures

multiple flaws being present. Because
these are individually insufficient to
cause failure they are regarded as minor
factors during operations. Eradication
of all latent failures is limited primarily
by economic cost but also because it

is difficult before the fact to see how
such failures might contribute to an
accident. The failures change constantly
because of changing technology, work

5) Complex systems run in
degraded mode.

that complex systems run as broken

systems. The system continues to

function because it contains so manv

accidents’that nearly generated
catastrophe. Arguments that these
degraded conditions should have
been recognized before the overt
accident are usually predicated on
naive notions of system performance.
System operations are dynamic, with
components (organizational, human,
technical) failing and being replaced
continuously.

6) Catastrophe is always just
around the corner.

Complex systems possess potential
for catastrophic failure. Human
practitioners are nearly always in close
physical and temporal proximity to
these potential failures - disaster can
occur at any time and in nearly any
place. The potential for catastrophic
outcome is a hallmark of complex
systems. It is impossible to eliminate the
potential for such catastrophic failure;
the potential for such failure is always
present by the system’s own nature.

7) Post-accident attribution
accident to a ‘root cause’ is
fundamentally wrong.

Because overt failure requires multiple
faults, there is no isolated ‘cause’

of an accident. There are multiple
contributors to accidents. Each of
these is necessary insufficient in itself
to create an accident. Only jointly are
these causes sufficient to create an
accident. Indeed. it is the linking of

Distributed
systems are
generally in a state
of ‘grey failure’

Richard | Cook
https://www.skybrary.aero/bookshelf/books/5926.pdf

FT

Focus on resilience and redundancy

FT

Think about what is acceptable
latency

FT

Build observability into your system

FT

Log aggregation and transaction ids

FT

Make sure you know when
something is REALLY wrong

FT

Heimdall Monitoring hub FAQs Add Monitoring Report a bug

il °
il 512 pass

Journalists can publish Users can subscribe Subscribers can access Subscribers can view
content to the website their account content and
personalised content

Newspaper can be Newspaper can be Newspaper can be Customers can contact
produced printed distributed to the right customer service
people

Have a plan for the inevitable
migrations

FT

4. How you test things

Every service needs automated tests

FT

Consider the following topology—a very plausible example of a microservice

architecture.

Test at the
boundary of the
service

Service A’s interaction with service B involves service B talking to Redis and
service C. However, the smallest unit to be tested really is service A’s
interaction with service B, and the easiest way to test that interaction is by

spinning up a fake for service B and testing service A’s interaction with the

Cindy Sridharan:
https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16
FT

Acceptance tests running locally
pushes developers towards a “full
stack on your laptop”

FT

You end up with a distributed
monolith

FT

Test in production!

FT

Cindy Sridharan:

https://copyconstruct.medium.com/testing-in-production-the-safe-way-18ca102d0ef1

PRE-PRODUCTTON TESTING IN PRODUCTTION
— >

— 3

—VUNIT Tests

“INTER -
T FONCTIoNAL TESTS Tes A SO
- componenT TecTs RN - MONITORL NG
—FuzZZ TEeSTS Ll LNV = — TRAFFIC SHAPING
— STATIC ANALYSLS — LOAD TESTS “FEATURE FLAGGOING
— PROPERTY BASED TESTS - EXCEPTION
- COVERRGE TESTS — SHADOWING TRACK ING)
~ BENCHMARK TESTS - CONFIG TESTS

— REMRESSION TESTS
—CONTRACT TESTS
— LINT TESTS

— RLEPTANCE TESTS
— MVTATION TESTS

— SMOKE TESTS

- u;/ov. TESTS

— VUSABLLLITY TESTS
- PENETRATION TESTS
— THREAT MODELLING

FT

Test your infrastructure too - chaos
engineering

FT

5. How you support things

The team that builds a system has to
be the team that runs it too

FT

Failover 7

Type of Failover ActiveActive
Architecture @®

Type of Failover Process FullyAutomated
®

Type of Failback Process FullyAutomated
®

If something is broken in Heroku or AWS in a single region we can perform a manual
failover to the other region.

You build things
differently when
you're the one
that has to
respond at 3am

FT

6. What your organisation
looks like

ORGANIZING
BUSINESS AND
TECHNOLOGY
TEAMS FOR FAST
FLOW

Foreword by

RUTH
MALAN

MATTHEW SKELTON
and MANUEL PAIS

“Organising teams
for fast flow”

FT

Platform teams

FT

Enabling teams

FT

Guardrails

These guardrails cover the things we expect a team fo consider so that we build the
right things and build things right. Following them ensures the things we build are

safe, secure, and operable.

Use them as a checklist to make sure you are making the right decisions, or as an

entry point to find out more about our principles, policies and standards.

Note that these are still being developed and added to.

1. Buy vs Build

Can you buy something to solve
this problem rather than building
it?

View page

5. Security &
Privacy

We need to build secure products
and services

2. Procurement

We need fo go through a
procurement process for any new
relationship with a supplier,
whether free or paid

View page

6. Accessibility &
Browser Support

We need fo build websites that
meet the needs of our customers

3. TGG
Endorsement

Changes to the way the FT uses
technology should be raised at the
Tech Governance Group

View page

7. Analytics, Logs &
Meftrics

We need to make sure we know
how the things we built are used

4. Adding to Biz
Ops

Make sure the initial record has
been created

View page

8. Change &
Release Logging

All changes made at the FT must
be logged

Data & Storage

Choosing the right tool or platform for your data is a big decision buft listed below
are the solutions we use and recommend at the FT.

Filter by subject: ‘ Big Data l | Databases l

Amazon Athena Google BigQuery Amazon Elasticsearch
DynamoDB
MongoDB Neo4J PostgreSQL Amazon S3

A database for working with
highly interconnected data

In summary...

Going cloud native is a
transformation

FT

It's worth doing because it
transforms your ability to add value
to the business

FT

Thank you

e https:/medium.com/ft-product-technology

FT

https://medium.com/ft-product-technology

