
© 2020 Aqua Security Software Ltd., All Rights Reserved © 2020 Aqua Security Software Ltd., All Rights Reserved

Liz Rice
VP Open Source Engineering, Aqua Security

@lizrice | @aquasecteam

The Container Security Checklist

@lizrice

containersecurity.tech

@lizrice

Appendix: Security Checklist
This appendix covers some important items you should at least
think about when considering how best to secure your container
deployments. In your environment it might well not make sense
to apply every item, but if you have thought about them, you will
be off to a good start. No doubt this list is not absolutely
comprehensive!

@lizrice

Build Deploy Run

Host
machines

Container
images

Build
machines

Container
config

Secrets
Runtime &

network
security

@lizrice

Choose your own adventure

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Build
machines

1. Are your builds running separately from your production cluster?

@lizrice

Don’t run builds in your production cluster

Dockerfile
…
RUN blah blah
…

Kernel

Build
processes Applications

Docker
daemon

/var/run/docker.sock

@lizrice

Demo – dangerous dockerfiles

@lizrice

Don’t run builds in your production cluster

Dockerfile
…
RUN blah blah
…

Kernel

Build
processes Applications

Docker
daemon

/var/run/docker.sock

docker build … docker run …

@lizrice

Sandbox

Don’t run builds in your production cluster

Dockerfile
…
RUN blah blah
…

Kernel

Build
processes Applications

Docker
daemon

/var/run/docker.sock

* Unless you are
very sure you know
what you’re doing

@lizrice

Don’t run builds in your production cluster*

Dockerfile
…
RUN blah blah
…

Kernel

Rootless
build

processes
Applications

* Unless you are
very sure you know
what you’re doing

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Container
images

2. Is all executable code added to a container image at build time?

@lizrice

Treat containers as immutable

app

Scan for vulnerable
packages &

dependencies
app

More code

curl / apt / yum

@lizrice

Demo – image drift

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Container
config

3. Are you avoiding –privileged?

@lizrice

--privileged

“The most dangerous flag in computing”
- Andrew Martin

@lizrice

More granular permissions than root

Most containers don’t need to:

• Install Kernel modules (CAP_SYS_MODULE)

• Change the system time (CAP_SYS_TIME)

• Trace / modify arbitrary processes (CAP_SYS_PTRACE)

Linux capabilities

@lizrice

Demo – privileged container

@lizrice

$ docker run --rm -it --cap-add=ALL ubuntu

/# more /proc/1/status | grep CapEff

CapEff: 0000003fffffffff

$ docker run --rm -it --cap-drop=ALL ubuntu

/# more /proc/1/status | grep CapEff

CapEff: 0000000000000000

$ docker run --rm -it ubuntu

/# more /proc/1/status | grep CapEff

CapEff: 00000000a80425fb

$ docker run --rm -it --privileged ubuntu

/# more /proc/1/status | grep CapEff

CapEff: 0000003fffffffff

All capabilities

@lizrice

$ docker run --rm -it ubuntu

root@316a2ab0ddcb:/# ls /dev

console core fd full mqueue null ptmx pts random shm stderr stdin stdout tty urandom

zero

$ docker run --rm -it --privileged ubuntu

root@87c19bbc393a:/# ls /dev

autofs loop-control ptmx tty14 tty33 tty52 ttyS13 ttyS4 vcsa

bsg loop0 pts tty15 tty34 tty53 ttyS14 ttyS5 vcsa1

btrfs-control loop1 random tty16 tty35 tty54 ttyS15 ttyS6 vcsa2

console loop2 rfkill tty17 tty36 tty55 ttyS16 ttyS7 vcsa3

core loop3 rtc0 tty18 tty37 tty56 ttyS17 ttyS8 vcsa4

cpu_dma_latency loop4 sda tty19 tty38 tty57 ttyS18 ttyS9 vcsa5

cuse loop5 sda1 tty2 tty39 tty58 ttyS19 ttyprintk vcsa6

dm-0 loop6 sg0 tty20 tty4 tty59 ttyS2 udmabuf vcsu

dm-1 loop7 shm tty21 tty40 tty6 ttyS20 uhid vcsu1

dri mapper snapshot tty22 tty41 tty60 ttyS21 uinput vcsu2

ecryptfs mcelog snd tty23 tty42 tty61 ttyS22 urandom vcsu3

fb0 mem stderr tty24 tty43 tty62 ttyS23 userio vcsu4

fd memory_bandwidth stdin tty25 tty44 tty63 ttyS24 vboxguest vcsu5

…

All host devices

@lizrice

You don’t need
–-privileged

to be root

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Host
machines

4. Are you keeping hosts up to date with the latest security releases?

@lizrice

@lizrice

@lizrice

Kubernetes security announcements

https://groups.google.com/g/kubernetes-security-announce

@lizrice

Host scans and updates

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Secrets

5. Are your secrets encrypted at rest and in transit?

@lizrice

Demo – secret encryption

@lizrice

$ kubectl get secret my-secret -o jsonpath="{.data.password}" |

base64 --decode

Keepthissecret

$ sudo grep keepthissecret /var/lib/etcd/member/snap/db

Binary file /var/lib/etcd/member/snap/db matches

@lizrice

Encrypting secrets

Use EncryptionConfiguration

Secrets injection: Hashicorp Vault,
CyberArk Conjur, Aqua etc…

apiVersion: apiserver.config.k8s.io/v1

kind: EncryptionConfiguration

resources:

- resources:

- secrets

providers:

- aescbc:

keys:

- name: key1

secret: <BASE 64 ENCODED SECRET>

- identity: {}

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

@lizrice

Build Deploy Run

Runtime &
network
security

6. Can you prevent container drift? Not open source…

@lizrice

Demo – drift prevention

@lizrice

1. Are your builds running separately from your production cluster?

2. Is all executable code added to a container image at build time?

3. Are you avoiding –privileged?

4. Are you keeping hosts up to date with the latest security releases?

5. Are your secrets encrypted at rest and in transit?

6. Can you prevent container drift? Not open source…

© 2020 Aqua Security Software Ltd., All Rights Reserved © 2020 Aqua Security Software Ltd., All Rights Reserved

@lizrice | @aquasecteam

containersecurity.tech

