
copyright © 2020 by amundsen.com, inc. -- all rights reserved

GraphQL, gRPC and REST,
Oh My!

Mike Amundsen
@mamund

youtube.com/mamund

A unified API design method

copyright © 2020 by amundsen.com, inc. -- all rights reserved

copyright © 2020 by amundsen.com, inc. -- all rights reserved

copyright © 2020 by amundsen.com, inc. -- all rights reserved
4

copyright © 2020 by amundsen.com, inc. -- all rights reserved

"From design to code to test to
deployment, unlock hidden business value
and release stable and scalable web APIs

that meet customer needs and solve
important business problems in a
consistent and reliable manner."

-- Pragmatic Publishers

g.mamund.com/GreatWebAPIs

copyright © 2020 by amundsen.com, inc. -- all rights reserved

Overview

● A Story of API Design and Governance
● The Challenge of HTTP-centric API Design
● A Unified Method for API Design

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice

○ Needed a consistent practice in order to scale up API community
○ Made design the responsibility of a central, enterprise-level body

● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice

○ Researched options, common usage, general guidance
○ Mapped out holistic approach to API design

● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews

○ Created courses and wrote guidance documents
○ Built a custom OpenAPI editor/linter/catalog system
○ Hired/trained full-time design review teams

● All was going fine until....
● Now they have to commit to multiple parallel practices

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....

○ They wanted to start using GraphQL
○ None of their training, tools, or processes applied anymore

● Now they have to commit to multiple parallel practices

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices

○ Added training, tools, review teams, etc.
○ Each new style/tech means another process track

copyright © 2020 by amundsen.com, inc. -- all rights reserved

What's going on here?

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge of HTTP-centric
API Design

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme

○ Most people start w/ HTTP-based APIs
○ Lots of tools and training focuses on HTTP-based APIs

● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design

○ "When all you have is a hammer…"
○ HTTP-elements become design-elements (URIs, Methods, Headers, etc.)

● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions

○ OpenAPI is HTTP-specific, but now we need lots of API definition languages
○ AsyncAPI, protobuf, Scheme Definition Language, SOAP, etc.

● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance

○ OpenAPI becomes the company's 'gatekeeper' technology
○ You have to duplicate governance efforts; one for each implementation stack

● Introducing other implementations (graphQL, etc.) breaks everything

copyright © 2020 by amundsen.com, inc. -- all rights reserved

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

○ Different design/review rules, different implementation tools, different monitoring, etc.
○ Slows experimentation, exploration, and roll-out of innovative solutions

copyright © 2020 by amundsen.com, inc. -- all rights reserved

OK, how do we solve this?

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Method for API Design

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics

○ Don't start with CRUD or resource-based designs
○ Don't design URLs, resources, headers, status codes, methods, etc.

● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead

○ Define properties (givenName , smsNumber , etc.), not objects
○ Define actions (input-transform-output) , not HTTP resources and methods

● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs

○ Dublin Core Application Profiles (2005)
○ Application-Level Profile Semantics (2015)

● Translate design language into implementation definitions (SDL, proto, etc.)

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate designs into implementation definitions (SDL, proto, etc.)

○ ALPS --> OpenAPI
○ ALPS --> AsyncAPI
○ ALPS --> protobuf
○ ALPS --> SDL
○ etc...

copyright © 2020 by amundsen.com, inc. -- all rights reserved

Let's see some examples....

copyright © 2020 by amundsen.com, inc. -- all rights reserved

So...

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process

○ Stop using URLs, Methods, Resources, & Status Codes as design elements
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process

○ Stop using URLs, Methods, Resources, & Status Codes as design elements
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)

○ Stick to using properties and actions to describe your API designs
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)

○ Translate your unified design documents into implementation-specific definitions
● Future-proof your design process

copyright © 2020 by amundsen.com, inc. -- all rights reserved

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

○ Even if you use only one API style today, prepare for supporting others in the future

copyright © 2020 by amundsen.com, inc. -- all rights reserved

That's all there is!

copyright © 2020 by amundsen.com, inc. -- all rights reserved

Resources
● "Design and Build Great Web APIs"

g.mamund.com/greatwebapis

● This talk (slides, examples, etc.)
g.mamund.com/unified-api-design

● More related content:
g.mamund.com/youtube

copyright © 2020 by amundsen.com, inc. -- all rights reserved

GraphQL, gRPC and REST,
Oh My!

Mike Amundsen
@mamund

youtube.com/mamund

A unified API design method

