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"From design to code to test to 
deployment, unlock hidden business value 
and release stable and scalable web APIs 

that meet customer needs and solve 
important business problems in a 
consistent and reliable manner."

-- Pragmatic Publishers

g.mamund.com/GreatWebAPIs
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Overview

● A Story of API Design and Governance
● The Challenge of HTTP-centric API Design
● A Unified Method for API Design
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A Story of API Design and Governance



copyright © 2020 by amundsen.com, inc. -- all rights reserved 

A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices
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A Story of API Design and Governance
● A large company committed to strong API Design practice

○ Needed a consistent practice in order to scale up API community
○ Made design the responsibility of a central, enterprise-level body

● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices
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A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice

○ Researched options, common usage, general guidance
○ Mapped out holistic approach to API design

● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices
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A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews

○ Created courses and wrote guidance documents
○ Built a custom OpenAPI editor/linter/catalog system
○ Hired/trained full-time design review teams

● All was going fine until....
● Now they have to commit to multiple parallel practices
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A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....

○ They wanted to start using GraphQL
○ None of their training, tools, or processes applied anymore

● Now they have to commit to multiple parallel practices
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A Story of API Design and Governance
● A large company committed to strong API Design practice
● They determined OpenAPI as the backbone of the practice
● Investing training, tooling, and consistent design reviews
● All was going fine until....
● Now they have to commit to multiple parallel practices

○ Added training, tools, review teams, etc. 
○ Each new style/tech means another process track
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What's going on here?
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The Challenge of HTTP-centric 
API Design
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The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything
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The Challenge
● HTTP reigns supreme

○ Most people start w/ HTTP-based APIs
○ Lots of tools and training focuses on HTTP-based APIs

● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything
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The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design

○ "When all you have is a hammer…"
○ HTTP-elements become design-elements (URIs, Methods, Headers, etc.)

● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything



copyright © 2020 by amundsen.com, inc. -- all rights reserved 

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions

○ OpenAPI is HTTP-specific, but now we need lots of API definition languages
○ AsyncAPI, protobuf, Scheme Definition Language, SOAP, etc.

● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything



copyright © 2020 by amundsen.com, inc. -- all rights reserved 

The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance

○ OpenAPI becomes the company's 'gatekeeper' technology
○ You have to duplicate governance efforts; one for each implementation stack

● Introducing other implementations (graphQL, etc.) breaks everything
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The Challenge
● HTTP reigns supreme
● HTTP-centric implementation leads to HTTP-centric design
● HTTP-centric design leads to HTTP-centric definitions
● HTTP-centric definitions lead to HTTP-centric governance
● Introducing other implementations (graphQL, etc.) breaks everything

○ Different design/review rules, different implementation tools, different monitoring, etc.
○ Slows experimentation, exploration, and roll-out of innovative solutions
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OK, how do we solve this?
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A Unified Method for API Design
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A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)
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A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics

○ Don't start with CRUD or resource-based  designs
○ Don't design URLs, resources, headers, status codes, methods, etc.

● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)
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A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead

○ Define properties (givenName , smsNumber , etc.), not objects
○ Define actions (input-transform-output) , not HTTP resources and methods

● Use an interface description language (ALPS) for designs
● Translate design language into implementation definitions (SDL, proto, etc.)
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A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs

○ Dublin Core Application Profiles (2005)
○ Application-Level Profile Semantics (2015)

● Translate design language into implementation definitions (SDL, proto, etc.)
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A Unified Design Solution
● Use design methods that don't rely on HTTP-specifics
● Focus on interface properties and actions instead
● Use an interface description language (ALPS) for designs
● Translate designs into implementation definitions (SDL, proto, etc.)

○ ALPS --> OpenAPI
○ ALPS --> AsyncAPI
○ ALPS --> protobuf
○ ALPS --> SDL
○ etc...
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Let's see some examples....
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So...
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A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process



copyright © 2020 by amundsen.com, inc. -- all rights reserved 

A Method for Unified API Design
● Break the HTTP-centric grip on your API design process

○ Stop using URLs, Methods, Resources, & Status Codes as design elements
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process
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A Method for Unified API Design
● Break the HTTP-centric grip on your API design process

○ Stop using URLs, Methods, Resources, & Status Codes as design elements
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process
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A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)

○ Stick to using properties and actions to describe your API designs
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process
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A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)

○ Translate your unified design documents into implementation-specific definitions
● Future-proof your design process
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A Method for Unified API Design
● Break the HTTP-centric grip on your API design process
● Embrace interface descriptions (ALPS)
● Enable translations (OpenAPI, AsyncAPI, SDL, proto, etc.)
● Future-proof your design process

○ Even if you use only one API style today, prepare for supporting others in the future
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That's all there is!
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Resources
● "Design and Build Great Web APIs" 

g.mamund.com/greatwebapis

● This talk (slides, examples, etc.)
g.mamund.com/unified-api-design

● More related content:
g.mamund.com/youtube
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