
Copyright 2020 Kirk Pepperdine

MEMORY
EFFICIENT JAVA

Copyright 2020 Kirk Pepperdine

▸ Kirk Pepperdine

▸ Author of jPDM, a performance diagnostic model

▸ Author of the original Java Performance Tuning workshop

▸ Co-founded jClarity

▸ Building the smart generation of performance diagnostic tooling

▸ Bring predictability into the diagnostic process

▸ Co-founded JCrete

▸ The hottest unconference on the planet

▸ Java Champion

OUR MARKETING SLIDE

Copyright 2020 Kirk Pepperdine

 jC
larity

Demo

Copyright 2020 Kirk Pepperdine

 jC
larity

What is your performance trouble spot

Copyright 2020 Kirk Pepperdine

INDUSTRY SURVEY

 jC
larity

Copyright 2020 Kirk Pepperdine

INDUSTRY SURVEY

 jC
larity

Copyright 2020 Kirk Pepperdine

 jC
larity

> 70% of all applications are bottlenecked
on memory

Copyright 2020 Kirk Pepperdine

 jC
larity

and no,

Garbage Collection

is not a fault!!!!

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Spring Boot

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Cassandra

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Cassandra
or any big nosql solution

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Apache Spark

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Apache Spark
or any big data framework

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Log4J

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

Log4J
or any Java logging framework

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

JSON

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

JSON
With almost any Marshalling protocol

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

ECom caching products

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

ECom caching products
Hibernate

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

ECom caching products
Hibernate
and so on

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

ECom caching products
Hibernate
and so on
and so on

Copyright 2020 Kirk Pepperdine

DO YOU USE

 jC
larity

ECom caching products
Hibernate
and so on
and so on
and so on

Copyright 2020 Kirk Pepperdine

 jC
larity

then you are very likely in this 70%

Copyright 2020 Kirk Pepperdine

Copyright 2020 Kirk Pepperdine

WAR STORIES
▸Reduced allocation rates from 1.8gb/sec to 0

▸ tps jumped from 400,000 to 25,000,000!!!

▸ Stripped all logging our of a transactional engine

▸ Throughput jumped by a factor of 4x

▸Wrapped 2 logging statements in a web socket framework

▸Memory churn reduced by a factor of 2

▸ and …..

 jC
larity

Copyright 2020 Kirk Pepperdine

ALLOCATION SITE

 jC
larity

Foo foo = new Foo();

forms an allocation site

0: new #2 // class java/lang/Object
2: dup
4: invokespecial #1 // Method java/lang/Object."<init>":()V

▸Allocation will (mostly) occur in Java heap

▸ fast path

▸ slow path

▸ small objects maybe optimized to an scalar allocation

Copyright 2020 Kirk Pepperdine

ALLOCATIONS
▸ Size vs. Frequency

▸ cost of allocating large objects mostly equal to cost smaller objects

▸ cost of allocations is mostly inexpensive

▸ cheap * a lot == expensive

▸Allocation rate is an approximation of allocation frequency

▸use allocation rate as a proxy measure for allocation frequency

 jC
larity

Copyright 2020 Kirk Pepperdine

REDUCING ALLOCATIONS

 jC
larity

> 1gb/sec

< 300mb/sec

siz
e

of
 g

ai
n

Copyright 2020 Kirk Pepperdine

OTHER PROBLEMS
▸High memory churn rates

▸many temporary objects

 jC
larity

▸Quickly fill Eden

▸ frequent young gc cycles

▸ speeds up aging

▸premature promotion

▸more frequent tenured cycles

▸ increased copy costs

▸ increased heap fragmentation

▸Allocation is quick

▸quick * large number = slow

Copyright 2020 Kirk Pepperdine

SIDE-EFFECTS
▸High memory churn rates

▸many temporary objects

 jC
larity

▸Quickly fill Eden

▸ frequent young gc cycles

▸ speeds up aging

▸premature promotion

▸more frequent tenured cycles

▸ increased copy costs

▸ increased heap fragmentation

▸Allocation is quick

▸quick * large number = slow

Hyper active
garbage collector

Copyright 2020 Kirk Pepperdine

BLAME GAME

 jC
larity

garbage

collector

Copyright 2020 Kirk Pepperdine

SERIOUSLY????

 jC
larity

garbage

collector

Copyright 2020 Kirk Pepperdine

DEFENSELESS

 jC
larity

garbage

collector

Copyright 2020 Kirk Pepperdine

 jC
larity

What about Mastermind?

Copyright 2020 Kirk Pepperdine

TEXT

TITLE TEXT

▸ Body Level One

▸ Body Level Two

▸ Body Level Three

▸ Body Level Four

▸ Body Level Five

@kcpeppe
kirk@kodewerk.com

Ask me about our
Java Performance Tuning Workshops

