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▸ Kirk Pepperdine 

▸ Author of jPDM, a performance diagnostic model 

▸ Author of the original Java Performance Tuning workshop 

▸ Co-founded jClarity 

▸ Building the smart generation of performance diagnostic tooling 

▸ Bring predictability into the diagnostic process 

▸ Co-founded JCrete 

▸ The hottest unconference on the planet 

▸ Java Champion 

OUR MARKETING SLIDE
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What is your performance trouble spot
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INDUSTRY SURVEY
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> 70% of all applications are bottlenecked 
on memory
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and no,

Garbage Collection

is not a fault!!!!
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Spring Boot
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Cassandra
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DO YOU USE
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Cassandra
or any big nosql solution
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Apache Spark
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DO YOU USE
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Apache Spark
or any big data framework
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Log4J
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Log4J
or any Java logging framework
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JSON
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JSON
With almost any Marshalling protocol
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ECom caching products
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Hibernate
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ECom caching products
Hibernate
and so on
and so on
and so on
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then you are very likely in this 70%



Copyright 2020 Kirk Pepperdine



Copyright 2020 Kirk Pepperdine

WAR STORIES
▸Reduced allocation rates from 1.8gb/sec to 0 

▸ tps jumped from 400,000 to 25,000,000!!! 

▸ Stripped all logging our of a transactional engine 

▸ Throughput jumped by a factor of 4x 

▸Wrapped 2 logging statements in a web socket framework 

▸Memory churn reduced by a factor of 2 

▸ and …..
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ALLOCATION SITE
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Foo foo = new Foo();

forms an allocation site

0: new           #2   // class java/lang/Object
2: dup
4: invokespecial #1   // Method java/lang/Object."<init>":()V

▸Allocation will (mostly) occur in Java heap 

▸ fast path 

▸ slow path 

▸ small objects maybe optimized to an scalar allocation
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ALLOCATIONS
▸ Size vs. Frequency 

▸ cost of allocating large objects mostly equal to cost smaller objects 

▸ cost of allocations is mostly inexpensive 

▸ cheap * a lot == expensive 

▸Allocation rate is an approximation of allocation frequency 

▸use allocation rate as a proxy measure for allocation frequency
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REDUCING ALLOCATIONS
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> 1gb/sec

< 300mb/sec
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OTHER PROBLEMS
▸High memory churn rates 

▸many temporary objects 
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▸Quickly fill Eden 

▸ frequent young gc cycles 

▸ speeds up aging 

▸premature promotion 

▸more frequent tenured cycles 

▸ increased copy costs 

▸ increased heap fragmentation 

▸Allocation is quick 

▸quick * large number = slow
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SIDE-EFFECTS
▸High memory churn rates 

▸many temporary objects
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▸Quickly fill Eden 

▸ frequent young gc cycles 

▸ speeds up aging 

▸premature promotion 

▸more frequent tenured cycles 

▸ increased copy costs 

▸ increased heap fragmentation 

▸Allocation is quick 

▸quick * large number = slow

Hyper active 
garbage collector
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BLAME GAME
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garbage 

collector
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SERIOUSLY????
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garbage 

collector
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DEFENSELESS 
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What about Mastermind?
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TEXT

TITLE TEXT

▸ Body Level One 

▸ Body Level Two 

▸ Body Level Three 

▸ Body Level Four 

▸ Body Level Five

@kcpeppe 
kirk@kodewerk.com

Ask me about our 
Java Performance Tuning Workshops


