
The Past, Present, and Future of 
Cloud Native API Gateways

Daniel Bryant



tl;dr

• Edge and API gateways have undergone a series of evolutions,  
driven by architecture and technology 

• Adopting microservices, Kubernetes, and cloud changes the workflow 

• Chose your Kubernetes API gateway (and platform) intentionally
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Edge: The boundary between your 
data center and your user(s)
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Thesis:  
The evolution of the edge has been driven by  
application architecture and technology
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~1995



Application Architecture in the ‘90s
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Hardware Load Balancer
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User Systems administrators

Purpose High availability / scalability

Key Features
Load balancing  

(round robin, sticky sessions) 
Health checks
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~2000



Similar application architecture
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Software Load Balancer
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User Systems administrators  
(“pre DevOps”)

Purpose High availability / scalability

Key Features
Load balancing 
Health checks 
Observability
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~2005
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The Application Delivery Controller (ADC)
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Application Delivery Controllers (ADCs)
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User Systems administrators

Purpose High availability and  
application acceleration

Key Features SSL offload, caching, 
compression + load balancing
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~2010



The proliferation of APIs
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2005: API launched 2008 2009



API Gateway (1st Gen)
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User Systems administrators &  
API developers

Purpose Expose business APIs to broader 
ecosystem (“API management”)

Key Features
L7 routing (e.g., throttling), 

Publishing, Dev Portal, Analytics, 
Monetization
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~2015
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Mini-services
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API Gateway (2nd Generation)
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API Gateway (2nd Generation)
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User Systems administrators &  
API developers

Purpose Centralize cross-cutting app 
concerns

Key Features Authentication, rate limiting, 
monitoring + routing
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Cloud-native 
applications



Cloud-Native Microservices
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• Modularisation (“microservices”) 

• Built, released, & operated by 
independent application teams 

• Scaled independently



App Architecture: A Spectrum of Services

• Different locations (K8s, VMs, FaaS) 

• Different protocols (gRPC, HTTP, WebSockets, TCP) 

• Different load balancing requirements  
(sticky sessions, round robin) 

• Different authentication requirements 
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Cloud Gateway
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Real-time Service 
Discovery

Need ADC-like traffic management 
capabilities: timeouts, retries, rate 

limiting, load balancing, caching, …

Need API Gateway-type 
management capabilities: 
authentication, developer 

portal, metrics, …
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Microservices lead to an even bigger change.
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“You build it, you run it” 
- Werner Vogels, CTO Amazon

i.e. you own what you code, 
from idea to production



Workflow: Full Cycle Development
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• App teams have full responsibility (and authority) for 
delivering a service, and ultimately, value to users 

• Increase agility by accelerating the feedback loop 

• https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249


35

This is a change in workflow.
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Thesis:  
The future evolution of the edge will be driven by  
application architecture, technology, and workflow
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Two biggest 
challenges with  
k8s & the edge



Challenge #1: Scaling Edge Management

38

Development
Team

Operations / Platform Team



Challenge #1: Scaling Edge Management



Challenge #2: Supporting Diverse Edge Requirements
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Three Strategies



Three Strategies for the Edge with Kubernetes

#1: Deploy an Additional Kubernetes API Gateway 

#2: Extend Existing API Gateway 

#3: Deploy an in-Cluster Edge Stack 
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https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/

https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/
https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/


#1 Deploy an Additional Kubernetes API Gateway

• Simply deploy an additional “in-cluster” gateway 

• Below the existing gateway 

• Below the load balancer 

• Management 

• Development teams responsible 

• OR existing ops team manages this
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#1 Deploy an Additional Kubernetes API Gateway

• Pros 

• There is minimal change to the core edge infrastructure.  

• Incremental migration easily 

• Cons 

• Increased management overhead of working with 
different components 

• Challenging to expose the functionality to each 
independent microservice teams 
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#2 Extend Existing API Gateway

• Implemented by modifying or augmenting the existing API 
gateway solution  

• Enable synchronization between the API endpoints and 
location of k8s services 

• Custom ingress controller for the existing API Gateway or 
load balancer 
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#2 Extend Existing API Gateway

• Pros 

• Reuse the existing tried and trusted API gateway 

• Leverage existing integrations with on-premises 
infrastructure and services  

• Cons 

• Workflows must change to preserve a single source of 
truth for the API gateway configuration. 

• Limited amount of configuration parameters via 
Kubernetes annotations
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#3 Deploy an In-Cluster Edge Stack

• Deploy Kubernetes-native API gateway with 
integrated supporting edge components 

• Installed in each of the new Kubernetes clusters, 
replacing existing edge 

• Ops team own, and provide sane defaults 

• Dev teams responsible for configuring the edge 
stack as part of their normal workflow

47



#3 Deploy an In-Cluster Edge Stack

• Pros 

• Edge management is simplified into a single stack 

• Supports cloud native best practices: “single 
source of truth”, GitOps etc 

• Cons 

• Potentially a large architectural/responsibility shift  

• Platform team must learn about new proxy 
technologies and edge components
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Wrapping Up



In Conclusion

• Edge/API gateways have undergone a series of evolutions, driven by architecture and tech 

• Hardware -> software 

• Networking Layer 4 -> Layer 7 

• Centralized management -> decentralised 

• Adopting microservices/Kubernetes changes workflow 

• Scale edge management  

• Support multi-protocol and cross-functional requirements 

• Chose your cloud API gateway (and platform components in general) intentionally
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app.getambassador.io

thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground

https://app.getambassador.io/
https://app.getambassador.io/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/


Many thanks!

• Learn more: 

• www.getambassador.io/learn/building-kubernetes-platform 

• www.getambassador.io/podcasts 

• www.infoq.com/profile/Daniel-Bryant  

• Find me in: 

• Datawire OSS Slack: d6e.co/slack  

• Twitter @danielbryantuk
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