
The Past, Present, and Future of
Cloud Native API Gateways

Daniel Bryant

tl;dr

• Edge and API gateways have undergone a series of evolutions,
driven by architecture and technology

• Adopting microservices, Kubernetes, and cloud changes the workflow

• Chose your Kubernetes API gateway (and platform) intentionally

2

@danielbryantuk

3

4

Edge: The boundary between your
data center and your user(s)

5

Thesis:
The evolution of the edge has been driven by
application architecture and technology

6

~1995

Application Architecture in the ‘90s

7

Hardware Load Balancer

8

User Systems administrators

Purpose High availability / scalability

Key Features
Load balancing

(round robin, sticky sessions)
Health checks

9

~2000

Similar application architecture

10

11

20022001

Software Load Balancer

12

User Systems administrators
(“pre DevOps”)

Purpose High availability / scalability

Key Features
Load balancing
Health checks
Observability

13

~2005

14

15

Ecommerce

0

75

150

225

300

2000 2005 2010 2015 2019

Amazon Revenue,
Billions

16

The Application Delivery Controller (ADC)

17

Application Delivery Controllers (ADCs)

18

User Systems administrators

Purpose High availability and
application acceleration

Key Features SSL offload, caching,
compression + load balancing

19
https://www.flickr.com/photos/pchow98/5518600886

https://www.flickr.com/photos/pchow98/5518600886
https://www.flickr.com/photos/pchow98/5518600886

20

~2010

The proliferation of APIs

21

2005: API launched 2008 2009

API Gateway (1st Gen)

22

User Systems administrators &
API developers

Purpose Expose business APIs to broader
ecosystem (“API management”)

Key Features
L7 routing (e.g., throttling),

Publishing, Dev Portal, Analytics,
Monetization

23

~2015

24

Mini-services

25

API Gateway (2nd Generation)

26

API Gateway (2nd Generation)

27

User Systems administrators &
API developers

Purpose Centralize cross-cutting app
concerns

Key Features Authentication, rate limiting,
monitoring + routing

28

Cloud-native
applications

Cloud-Native Microservices

29

• Modularisation (“microservices”)

• Built, released, & operated by
independent application teams

• Scaled independently

App Architecture: A Spectrum of Services

• Different locations (K8s, VMs, FaaS)

• Different protocols (gRPC, HTTP, WebSockets, TCP)

• Different load balancing requirements
(sticky sessions, round robin)

• Different authentication requirements

30

Cloud Gateway

31

Real-time Service
Discovery

Need ADC-like traffic management
capabilities: timeouts, retries, rate

limiting, load balancing, caching, …

Need API Gateway-type
management capabilities:
authentication, developer

portal, metrics, …

1

2

3

Microservices lead to an even bigger change.

32

33

“You build it, you run it”
- Werner Vogels, CTO Amazon

i.e. you own what you code,
from idea to production

Workflow: Full Cycle Development

34

• App teams have full responsibility (and authority) for
delivering a service, and ultimately, value to users

• Increase agility by accelerating the feedback loop

• https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

35

This is a change in workflow.

36

Thesis:
The future evolution of the edge will be driven by
application architecture, technology, and workflow

37

Two biggest
challenges with
k8s & the edge

Challenge #1: Scaling Edge Management

38

Development
Team

Operations / Platform Team

Challenge #1: Scaling Edge Management

Challenge #2: Supporting Diverse Edge Requirements

40

41

Three Strategies

Three Strategies for the Edge with Kubernetes

#1: Deploy an Additional Kubernetes API Gateway

#2: Extend Existing API Gateway

#3: Deploy an in-Cluster Edge Stack

42

https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/

https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/
https://www.getambassador.io/resources/strategies-managing-apis-edge-kubernetes/

#1 Deploy an Additional Kubernetes API Gateway

• Simply deploy an additional “in-cluster” gateway

• Below the existing gateway

• Below the load balancer

• Management

• Development teams responsible

• OR existing ops team manages this

43

#1 Deploy an Additional Kubernetes API Gateway

• Pros

• There is minimal change to the core edge infrastructure.

• Incremental migration easily

• Cons

• Increased management overhead of working with
different components

• Challenging to expose the functionality to each
independent microservice teams

44

#2 Extend Existing API Gateway

• Implemented by modifying or augmenting the existing API
gateway solution

• Enable synchronization between the API endpoints and
location of k8s services

• Custom ingress controller for the existing API Gateway or
load balancer

45

#2 Extend Existing API Gateway

• Pros

• Reuse the existing tried and trusted API gateway

• Leverage existing integrations with on-premises
infrastructure and services

• Cons

• Workflows must change to preserve a single source of
truth for the API gateway configuration.

• Limited amount of configuration parameters via
Kubernetes annotations

46

#3 Deploy an In-Cluster Edge Stack

• Deploy Kubernetes-native API gateway with
integrated supporting edge components

• Installed in each of the new Kubernetes clusters,
replacing existing edge

• Ops team own, and provide sane defaults

• Dev teams responsible for configuring the edge
stack as part of their normal workflow

47

#3 Deploy an In-Cluster Edge Stack

• Pros

• Edge management is simplified into a single stack

• Supports cloud native best practices: “single
source of truth”, GitOps etc

• Cons

• Potentially a large architectural/responsibility shift

• Platform team must learn about new proxy
technologies and edge components

48

49

Wrapping Up

In Conclusion

• Edge/API gateways have undergone a series of evolutions, driven by architecture and tech

• Hardware -> software

• Networking Layer 4 -> Layer 7

• Centralized management -> decentralised

• Adopting microservices/Kubernetes changes workflow

• Scale edge management

• Support multi-protocol and cross-functional requirements

• Chose your cloud API gateway (and platform components in general) intentionally

50

app.getambassador.io

thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground

https://app.getambassador.io/
https://app.getambassador.io/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/
https://thenewstack.io/learning-kubernetes-the-need-for-a-realistic-playground/

Many thanks!

• Learn more:

• www.getambassador.io/learn/building-kubernetes-platform

• www.getambassador.io/podcasts

• www.infoq.com/profile/Daniel-Bryant

• Find me in:

• Datawire OSS Slack: d6e.co/slack

• Twitter @danielbryantuk

52

https://www.getambassador.io/learn/building-kubernetes-platform/
https://www.getambassador.io/podcasts/
https://www.infoq.com/profile/Daniel-Bryant/
http://d6e.co/slack
https://twitter.com/danielbryantuk
https://www.getambassador.io/learn/building-kubernetes-platform/
https://www.getambassador.io/podcasts/
https://www.infoq.com/profile/Daniel-Bryant/
http://d6e.co/slack
https://twitter.com/danielbryantuk

