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Choreography is great!

Photo by Lijian Zhang, under Creative Commons SA 2.0 License

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/


What we wanted

Photo by Lijian Zhang, under Creative Commons SA 2.0 License and Wikimedia Commons / CC BY-SA 4.0
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Opinions…

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography
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Synchronous
call chains

„Synchronous call
chains are evil!“

added latency, low availability, 
resource utilization, …



An asynchronous
call chain



Choreography or Orchestration?







Choreography or Orchestration?
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Peer-to-peer event chains
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Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado
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Pinball Machine Architecture
„What the hell just happened?“
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https://twitter.com/berndruecker/


Peer-to-peer event chains
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Why is it so tempting?
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Adding is easy!

You can „buy“ a shorter
initial time-to-value

by choreography. 

It yields in technical debt.
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Peer-to-peer event chains
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Peer-to-peer event chains
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Order

Decide about responsibility
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This is
choreography

This is
orchestration



My definition

Orchestration = command-driven communication
Choreography = event-driven communication
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It can still be messaging!
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Order

Checkout

Payment

Inventory

Shipment

Stateful orchestration

This orchestration
requires state
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Warning:
Contains Opinion
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Glue code (e.g. Java)

https://github.com/berndruecker/flowing-
retail/blob/master/kafka/java/order-
zeebe/src/main/java/io/flowing/retail/kafka/or
der/flow/FetchGoodsAdapter.java

https://github.com/berndruecker/flowing-retail/blob/master/kafka/java/order-zeebe/src/main/java/io/flowing/retail/kafka/order/flow/FetchGoodsAdapter.java


Using a workflow engine

Workflow Engine

Scheduler

Durable State

Glue Code Whatever you
need…

Workflow Definition

Workflow Engine:

Is stateful

Can wait
Can retry
Can escalate
Can compensate

Provides visibility



Now it is easy to change the process flow
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Processes are domain logic and live inside service boundaries
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Challenge:
Command vs. Event

Event

Command

vs



?

Event Command

Message Record Event

Fact, 
happened in the past, 
immutable

Intend, 
Want s.th. to happen,
The intention itself is a fact



?

Event Command

Message Record Event



Commands in disguise

The Customer Needs To Be 
Sent A Message To Confirm

Address Change
Event

Send 
Message

Wording of
Sender

Wording of
recipient



Checkout Order Payment

Event-driven:
Decision to couple is on the receiving side

Command-driven
Decision to couple is on the sending side

Direction of dependency

Retrieve 
Payment

Order
placed

Payment 
received

Direction of dependency



Distributed Monoliths
Authorization

Service

Document Context Page
Context

Document 
attached

Page
created

Document 
moved

Page 
moved

…



Define stable contract/API instead
Authorization

Service

Document Context Page
Context
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…



Who is responsible?
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It is all about responsibility!



Customer Created

Sam Newman: Building Microservices



Customer Onboarding is a mix!

Orchestration

Orchestration

Orchestration

Choreography



Your IT architecture

Choreography

Orchestration
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Your services
or applications



Monolith Chaos

Choreography

Orchestration
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Your services
or applications



Your IT architecture

Monolith Chaos

Choreography

Orchestration

Your services
or applications

Balance choreography and orchestration
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# Orchestration != central
# Choreography != decoupled

# Orchestration = Command-driven
# Choreography = Event-driven

# You need to balance both!
# It is mostly about responsibility and the direction of coupling
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Want to learn more?

https://learning.oreilly.com/get-learning/?code=PPAER20

https://learning.oreilly.com/get-learning/?code=PPAER20


Thank you!
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https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

