Balancing
Choreography &

orchestration

Choreography i§ great!

Photo by Lijian Zhang, under Creative Commons SA 2.0 License

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/

@berndruecker

What we wanted

,
0 b >
RS = ¥
_f
Al
yE 2

il

g 5

Photo by Lijian Zhang, under Creative Commons SA 2.0 License and Wikimedia Commons / CC BY-SA 4.0

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Opimioms...

stack overflow About Products For Teams

Home Orchestration vs. Choreography

PUBLIC Asked 9 years, 11 months ago Active 5 months ago Viewed 90k times

@ Stack Overflow
What are the differences between service orchestration and service choreography from an intra-
organization paint of view.

Users 189

FIND A JOB

Tags

soa composition service-composition

Jobs
edited Dec 7 '17 at 3:44 asked Nov 8 10 at 19:26

Companies g Andrei PetrosB

What's this?

https://stackoverflow.com/guestions/4127241/orchestration-vs-choreo

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

Service orchestration

Service orchestration represents a single centralized executable business process (the
orchestrator) that coordinates the interaction among different services. The orchestrator is
responsible for invoking and combining the services.

The relationship between all the participating services are described by a single endpoint (i.e., the
composite service). The orchestration includes the management of transactions between individual
services. Orchestration employs a centralized approach for service composition.

Service A | Repy Service B

L Composite

Service

Service D ‘ Service C

Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.

. Receive

Service A g Service B

L
v

Service D Service C
—

The choreography describes the interactions between multiple services, where as orchestration
represents control from one party's perspective. This means that a choreography differs from an
orchestration with respect to where the logic that controls the interactions between the services
involved should reside.

Service orchestration

Service orchestration represents a single centralized executable business process (the
orchestrator) that coordinates the interaction among different services. The orchestrator is
responsible for invoking and combining the services.

The relationship between all the participating services are described by a single endpoint (i.e., the
composite service). The orchestration includes the management of transactions between individual
services. Orchestration employs a centralized approach for service composition.

Service A | Reply Service B

Invoke

= |Composite
Service

Service D | = Service C

-,
QU
Q
.
SN
S

o>
S
O

S

Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.

i Receive
: .
Service A 2 Service B

E—

L
-

Service D : Service C
—

The choreography describes the interactions between multiple services, where as orchestration
represents control from one party's perspective. This means that a choreography differs from an
orchestration with respect to where the logic that controls the interactions between the services
involved should reside.

@berndruecker

Example
~ N
(Checkout\
N o /
o —~ T~
!/ payment » -~ (Shipment/
/ (N -
~ \ Inventory

~ -

Symchromous
call chaing

»Synchronous call
chains are evill”

added latency, low availability,

resource utilization, ...

blocking REST call

www.websequencediagrams.com

. aSymckvonous
call chain

mmm

/‘fe,sso\s,e_

www.websequencediagrams.com

Choreography or orchestration?

www.websequencediagrams.com www.websequencedlagra ms.com

Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.

Receive

Service A Service B

L
-

Service D : Service C
—

The choreography describes the interactions between multiple services, where as orchestration
represents control from one party's perspective. This means that a choreography differs from an
orchestration with respect to where the logic that controls the interactions between the services
involved should reside.

Service orchestration

Service orchestration represents a single centralized executable business process (the
orchestrator) that coordinates the interaction among different services. The orchestrator is
responsible for invoking and combining the services.

The relationship between all the participating services are described by a single endpoint (i.e., the
composite service). The orchestration includes the management of transactions between individual
services. Orchestration employs a centralized approach for service composition.

Service A | Reply Service B

n— Composite

Service

Service D | = Service C

Choreography or orchestration?

www.websequencediagrams.com www.websequencedlagra ms.com

@berndruecker

Event-driven
(Checkout) order
N - Placed IR A B G
Payment __,(Notification \
Received ~ -~ -
Goods
,—\\ [,—\\ Fetched
[4 Payment J ™~ \ Shlpment/
(L W N
~ \ Inventory -

~ -

Peev—{’o—Peer event chains

order
placed

7z~ ~
(’C:heckout\
~ /

@berndruecker

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Pinball Machine Archite WAt the hell just happened?

(Checkout\
~ _'</ -~ TN
- (Notification \
~ -
— T~
/ - = l < \
Payment = ~ _ \°hipment
~ /I (Inventor \ S -
~ -

@berndruecker

https://twitter.com/berndruecker/

@berndruecker

Peer—{'o—Peer event chains

order
placed
e ™ ~
F’
~

Checkout \

-_—

-~ ~
Inventory
w /

@berndruecker

- Eay

‘¢ ° N - - 7 N
Why i it 0 {'emp’rmg? S seyjm \
Ny Mo - -
N~ -
’g - N 7 SCYVl(e \\ / evw(e ;
=y SN (ervice (\ - _
7) (/ o
(fervice \ N . \\ D . -
A I - - ” S
N T [Service /\
Sel:n.(e A S—= -——
(- N
(Cervice ... /
% (Servue ,
- (1vvi? \

Event Bus ~ o s

@berndruecker

Why i it so tempting? 7 Adding is eagy!
\ Q
- =~ You can ,buy” a shorter
- ’ N
PRt (Sevie™ Servue \ initial time-to-value
(Sevxice) AP g ~D- _ ! by choreography.
- [
(’sey::e\ It yields in technical debt.
[Service .. |
\i o !
% / € e)
o ¢ Tervice: N\,

Event Bus ~ o s

Peer—+o—Peev event chains

order
placed

7z~ ~
(’C:heckout\
~ /

@berndruecker

Fetch the goods
before the
payment

@berndruecker

Fetch the goods

before the
' \7 payment

Peer—+o—Peev event chaing O

order
placed

%>
Checkout\
N P, = (7
. Tt €
& w e
— 4}/ bl N ..“‘
P —
\ [. A Y

- \ Shipment

I Payment -

)
Paymevd’ - shipped
received

éoods
etched

@berndruecker

Decide about vesPomsibili+y

This 1§
choreography order
YR placed
(Checkout TN
N o Order)
This is G
X Retrieve
orchestration aument
o, ™~ I’ -~ \
/ payment Payment \ Shipmentl
\ received) W

-~

My definition

Decide about vesPomsibilﬂy

order

- placed

(Checkout &h

N o

TN
Order \

Retrieve
bayment

-~

/ Payment 7 ~_ \ |pmentl
-
~ \ Inventory/

N o -

It can still be messaging!

@berndruecker

Si’ad’e{ul orchestration

N
(Checkout N &
Order \
. /Cvﬁ]
/ Payment Shlpment
~ / (Inventory

~ -

This orchestration

requires state

@berndruecker

@berndruecker

OREILLY

Practical
Process
Automati

el "f?%é 3

Bernd Ruecker

(o-founder and
Chie} Technologis’r o}
(ﬂW‘MV\Aa Jakob Freund and Bernd Ricker

REAL-LIFE

BPMN

Includes an introduction to DMN

mail@berndruecker.io
@berndruecker
http://berndruecker.io/

Analyze, improve and automate your business processes

CAMUNDA

http://berndruecker.io/

@ el

Send command: Send command: Send command: Send event:
retrieve payment fetch goods ship goods order delivered

(Checkout\ -~ \
Order

L

4 Payment Shlpment

\
~ / \ Inventory - ’

~ -

@berndruecker

@Component
public class FetchGoodsAdapter {

@Autowired

private MessageSender messageSender;

Glue code (e.g. Java)

@Autowired

private OrderRepository orderRepository;

&
Send commz
ship good:

@zeebellorker(type = "fetch-goods™)
public void handle(JobClient client, Activatedldob job) {
orderFlowContext context = OrderFlowContext.fromMap(job.getvariablesaAsMmap());

Send command:
fetch goods

)—

received

Goods fetched order order = orderRepository.findById(context.getOrderId()).get();

/ generate an UUID for this communication

String correlationId = UUID.randomUUID().toString();

messageSender. send(new Message<FetchGoodsCommandPayload>(//
"FetchGoodsCommand”, //
context.getTraceld(), //
new FetchGoodsCommandPayload() //
.setRefId(order.getId()) //
.setItems(order.getItems())) //

.setCorrelationid(correlationId));

client.newCompleteCommand(job.getkey()) //

https://github.com/berndruecker/flowing-
retail/blob/master/kafka/java/order- .send().join();
zeebe/src/main/java/io/flowing/retail/kafka/or }
der/flow/FetchGoodsAdapter.java

.variables(Collections.singletonMap("CorrelationId_FetchGoods", correlationId))

https://github.com/berndruecker/flowing-retail/blob/master/kafka/java/order-zeebe/src/main/java/io/flowing/retail/kafka/order/flow/FetchGoodsAdapter.java

Vsing a wovk{—low engine

Work{low Engine:

Wovk{-low Engine @ |
I§ stateful

Scheduler

(an wait

(an Ve‘hry

Durable §tate

(an escalate
(an compensad'e

Glue (ode Whatever you
need...

Provides visibilﬂy

Now it 1§ easy to

o

Send command:
retrieve payment

change the process How

©

Send command: Send command:

fetch goods ship goods

Send command:
retrieve payment

received

Send command:
fetch goods

Goods
fetched

o

Send event:
order delivered

Send command:
Ship goods

Goods
shipped

@berndruecker

Order
delivered

@berndruecker

Processes are domain logic and live V\sio\e service boundaries

- =

A

[Checkout)] T~
S N { oOrder \
~

[—

(Payment) P\ fShipment’

S =7 [Inventory]
N -’

—

b I

i
(omman
e:

(haue:«?\o\ v§. Event

(omm

v$

Event

[Mesiage pecord 7 Event

| |

Event (ommand

Fact, Intend,
happened in the past, Want §.th. fo happen,
immutable The intention itself i a fact

[Message Record 7. / Evevx’f !

%
7
7
7’
v
”
-y ’ -
CEvent N, (ommand

\ /
\——’

(ommands in o\isquise

Woro\ing o](
recipient '\

The (ustomer Needs To Be
fent A Message To (onfirm
Address (hange

Event

-
-—’

-
-
y e \

\

1
Wovdivw] o]l
Cender

Direction of dependency

order Retrieve
lmed Pay ment
E Checkout j 4’{ order E Payment j
Payment
received

Event-driven: K‘ Command-driven

Decision to couple i§ on the receivinq Side Decision to couple i§ on the Sem\ing side
4

Direction o} Aepemo\emc9

Distributed Mownoliths

’——-\

(, Authorization \
\ Service /

0C
) ‘e Document created
ocumen attached Page
moved moved \
“-lll...... ““-llllllll......
" ‘l“‘---....' :
U o R A * 0
L ‘e 3 e * 3
. . * ® .
. - . . D)
. ** . n
[] * * . []
- * * .
. . * . .
- “ .. . l.
- .
: Document (ontext . : Page % :
. . []
.
: . ", (ontext : :
. : % . -
" ” * o 5
. * e) E
. g . .
o ., . . o
. R .et L 4 “ «*
...lllllll------ ‘e I““
Ygpuuunt®

4
ay {
"Tsammammamnnnst®

Define stable contract /AP ims_i'eao\

(, Authorization
\ Service /

-

“‘--lllll......
L

MLLEN N I *
“‘ l...... “‘--lll.. .0
G Ya, Y e ., 0
v ‘e L A . o
L] * “ . N
™ * . *]
. **
n * . . L]
] * * A J []
- . * .]
. & .
[] . & . .
n . L Pv\ e . o
. . n "
: Document (ontext , : 9 . :
- . . - n
- : : fext : :
. . ., ontex . .
. n n
. [] ¢ . -
* n
. LU * N -
" o *e U -
. o S o S \
. R R . o
« as * .
M T T T T L L e % II“‘
Yaggunnt®

3
4
ay {
"Tsammammamnnnst®

.

Who 1§ respov\sible?

It is all about veSPomsibili’ryl

ord fend
roer legal doc§ ——ny
-_— order Notification
placed
\ ovder Send
N

Paymevﬂ’ b O+i{ri(ﬂ+|0 email
Pﬂyw“’-""f - received

(ustomer (reated

Loyalty points bank

Publishes Customer created Subscribes

Post service
event

Building

Customer service Email service Microservices

Sam Newman: Building Microservices N P—

(ustomer Omboam\img 15 a mix!

E’ Send "check Wait for " . ") Send "send Publish

5 . " Send "check Wait for "credit " "

=4 address address w " Create customer welcome letter customer

g N credit" command checked" event o

8 command checked" event command created” event

& | Registration | ~ ~ Customer
5 requested i N . created
5 S Lo]

3 -

O | —]

(horeogmphg

Address Check Credit Check

orchestration

Loyalty Points

orchestration

Post Service

Notification Service (including Email)

@berndruecker

Your Services

or applicod’ions

(hoveoqmphy

orchestration

@berndruecker

Your Services
or applicaﬁons

@ (horeoqmphy

Monolith orchestration

@berndruecker

Balance choreography and orchestration

Your Services

or applications

(!‘E 7 (horeoqmphy ‘ SZ)

Mowolith orchestration (haos

Py |

Py |

@berndruecker

i orchestration = central

(horeography = decoupled

orchestration = lommand-driven

Choreography = Event-driven

You need to balance both!

-l

It is mostly about responsibility and the direction o} coupling

Want to learn more?

https://learning.oreilly.com/get-learning/?code=PPAER20

O'REILLY

Practical
Process 7
Automation

Orchestration and Integration in Microservices
and Cloud Native Architectures

https://learning.oreilly.com/get-learning/?code=PPAER20

e ———
— - (=
l§

Thank you! —

Contact: mail@berndruecker.io
@berndruecker

Slides: https://berndruecker.io

Blog: https://medium.com/berndruecker

Code: https://github.com/berndruecker

https://www.infoworld.com/article/3254777/

application-development/
Infoworld 3-common-pitfalls-of-microservices-

integrationand-how-to-avoid-them.htm]

v https://www.infog.com/articles/events-
n o > workflow-automation

https://thenewstack.io/5-workflow-automation-
THENEWSTACK use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

