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What are the differences between service orchestration and service choreography from an intra-
organization paint of view.

Users 189

FIND A JOB

Tags

soa composition service-composition

Jobs
edited Dec 7 '17 at 3:44 asked Nov 8 10 at 19:26

Companies g Andrei PetrosB

What's this?

https://stackoverflow.com/guestions/4127241/orchestration-vs-choreo



https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

Service orchestration

Service orchestration represents a single centralized executable business process (the
orchestrator) that coordinates the interaction among different services. The orchestrator is
responsible for invoking and combining the services.

The relationship between all the participating services are described by a single endpoint (i.e., the
composite service). The orchestration includes the management of transactions between individual
services. Orchestration employs a centralized approach for service composition.
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Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.
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The choreography describes the interactions between multiple services, where as orchestration
represents control from one party's perspective. This means that a choreography differs from an
orchestration with respect to where the logic that controls the interactions between the services
involved should reside.
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Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.
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The choreography describes the interactions between multiple services, where as orchestration
represents control from one party's perspective. This means that a choreography differs from an
orchestration with respect to where the logic that controls the interactions between the services
involved should reside.
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Choreography or orchestration?
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Service Choreography

Service choreography is a global description of the participating services, which is defined by
exchange of messages, rules of interaction and agreements between two or more endpoints.
Choreography employs a decentralized approach for service composition.
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orchestration with respect to where the logic that controls the interactions between the services
involved should reside.




Service orchestration

Service orchestration represents a single centralized executable business process (the
orchestrator) that coordinates the interaction among different services. The orchestrator is
responsible for invoking and combining the services.

The relationship between all the participating services are described by a single endpoint (i.e., the
composite service). The orchestration includes the management of transactions between individual
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Phil Calcado at QCon NYC 2019
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@Component
public class FetchGoodsAdapter {

@Autowired

private MessageSender messageSender;

Glue code (e.g. Java)

@Autowired

private OrderRepository orderRepository;

&
Send commz
ship good:

@zeebellorker(type = "fetch-goods™)
public void handle(JobClient client, Activatedldob job) {
orderFlowContext context = OrderFlowContext.fromMap(job.getvariablesaAsMmap());

Send command:
fetch goods

)—

received

Goods fetched order order = orderRepository.findById( context.getOrderId() ).get();

/ generate an UUID for this communication

String correlationId = UUID.randomUUID().toString();

messageSender. send(new Message<FetchGoodsCommandPayload>( //
"FetchGoodsCommand”, //
context.getTraceld(), //
new FetchGoodsCommandPayload() //
.setRefId(order.getId()) //
.setItems(order.getItems())) //

.setCorrelationid(correlationId));

client.newCompleteCommand(job.getkey()) //

https://github.com/berndruecker/flowing-
retail/blob/master/kafka/java/order- .send().join();
zeebe/src/main/java/io/flowing/retail/kafka/or }
der/flow/FetchGoodsAdapter.java

.variables(Collections.singletonMap("CorrelationId_FetchGoods", correlationId))
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Now it 1§ easy to
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retrieve payment
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Processes are domain logic and live V\sio\e service boundaries
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Direction of dependency
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Distributed Mownoliths
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Who 1§ respov\sible?
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Your Services
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Balance choreography and orchestration

Your Services

or applications
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i orchestration = central

# (horeography = decoupled

orchestration = lommand-driven

Choreography = Event-driven

You need to balance both!

-l

# It is mostly about responsibility and the direction o} coupling



Want to learn more?

https://learning.oreilly.com/get-learning/?code=PPAER20
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Slides:  https://berndruecker.io

Blog: https://medium.com/berndruecker

Code: https://github.com/berndruecker
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