
Balancing
Choreography &
Orchestration

@berndruecker

Choreography is great!

Photo by Lijian Zhang, under Creative Commons SA 2.0 License

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/

What we wanted

Photo by Lijian Zhang, under Creative Commons SA 2.0 License and Wikimedia Commons / CC BY-SA 4.0

@berndruecker

https://www.flickr.com/photos/23447193@N06/7849857232
https://creativecommons.org/licenses/by-sa/2.0/
https://commons.wikimedia.org/wiki/File:Moshing_BMTH_RAL_2013.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Opinions…

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

I d
on

‘t
ag

re
e!

Example

Checkout

Payment

Inventory

Shipment

@berndruecker

Synchronous
call chains

„Synchronous call
chains are evil!“

added latency, low availability,
resource utilization, …

An asynchronous
call chain

Choreography or Orchestration?

Choreography or Orchestration?

Order
Placed

Payment
Received

Goods
Fetched

Notification

Event-driven
@berndruecker

Checkout

Payment

Inventory

Shipment

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Phil Calcado at QCon NYC 2019

https://twitter.com/pcalcado

Notification

Checkout

Payment

Inventory

Shipment

@berndruecker

Pinball Machine Architecture
„What the hell just happened?“

@berndruecker

https://twitter.com/berndruecker/

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

@berndruecker

Why is it so tempting?

Service
A

Event Bus

A
B

Service
B

C

Service
C

D
E

F

Service
D

G

Service
…

Service
…

Service …

Service
…

Service …

Service …

Service
…

@berndruecker

Why is it so tempting?

Service
A

Event Bus

A
B

Service
B

C

Service
C

D
E

F

Service
D

G

Service
…

Service
…

Service …

Service
…

Service …

Service …

Service
…

Adding is easy!

You can „buy“ a shorter
initial time-to-value

by choreography.

It yields in technical debt.

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Order
placed

Payment
received

Goods
shipped

Goods
fetched

Fetch the goods
before the
payment

@berndruecker

Peer-to-peer event chains

Checkout

Payment

Inventory

Shipment

Fetch the goods
before the
payment

Goods
fetched

Order
placed

Payment
received

Goods
shipped

@berndruecker

Order

Decide about responsibility

Checkout

Payment

Inventory

ShipmentPayment
received

Order
placed

Retrieve
payment

@berndruecker

This is
choreography

This is
orchestration

My definition

Orchestration = command-driven communication
Choreography = event-driven communication

Order

Decide about responsibility

Checkout

Payment

Inventory

Shipment

Order
placed

Retrieve
payment

It can still be messaging!

@berndruecker

Order

Checkout

Payment

Inventory

Shipment

Stateful orchestration

This orchestration
requires state

@berndruecker

Warning:
Contains Opinion

@berndruecker

mail@berndruecker.io
@berndruecker
http://berndruecker.io/

Bernd Ruecker
Co-founder and
Chief Technologist of
Camunda

http://berndruecker.io/

Order

Checkout

Payment

Inventory

Shipment

@berndruecker

Glue code (e.g. Java)

https://github.com/berndruecker/flowing-
retail/blob/master/kafka/java/order-
zeebe/src/main/java/io/flowing/retail/kafka/or
der/flow/FetchGoodsAdapter.java

https://github.com/berndruecker/flowing-retail/blob/master/kafka/java/order-zeebe/src/main/java/io/flowing/retail/kafka/order/flow/FetchGoodsAdapter.java

Using a workflow engine

Workflow Engine

Scheduler

Durable State

Glue Code Whatever you
need…

Workflow Definition

Workflow Engine:

Is stateful

Can wait
Can retry
Can escalate
Can compensate

Provides visibility

Now it is easy to change the process flow

@berndruecker

Processes are domain logic and live inside service boundaries
@berndruecker

Challenge:
Command vs. Event

Event

Command

vs

?

Event Command

Message Record Event

Fact,
happened in the past,
immutable

Intend,
Want s.th. to happen,
The intention itself is a fact

?

Event Command

Message Record Event

Commands in disguise

The Customer Needs To Be
Sent A Message To Confirm

Address Change
Event

Send
Message

Wording of
Sender

Wording of
recipient

Checkout Order Payment

Event-driven:
Decision to couple is on the receiving side

Command-driven
Decision to couple is on the sending side

Direction of dependency

Retrieve
Payment

Order
placed

Payment
received

Direction of dependency

Distributed Monoliths
Authorization

Service

Document Context Page
Context

Document
attached

Page
created

Document
moved

Page
moved

…

Define stable contract/API instead
Authorization

Service

Document Context Page
Context

Add
auth

…

Who is responsible?

Order

Order
Notification

Notification

Payment

Send
legal docs

Payment
received

Order
placed

Send
email

It is all about responsibility!

Customer Created

Sam Newman: Building Microservices

Customer Onboarding is a mix!

Orchestration

Orchestration

Orchestration

Choreography

Your IT architecture

Choreography

Orchestration

@berndruecker

Your services
or applications

Monolith Chaos

Choreography

Orchestration

@berndruecker

Your services
or applications

Your IT architecture

Monolith Chaos

Choreography

Orchestration

Your services
or applications

Balance choreography and orchestration
@berndruecker

Orchestration != central
Choreography != decoupled

Orchestration = Command-driven
Choreography = Event-driven

You need to balance both!
It is mostly about responsibility and the direction of coupling

@berndruecker

Want to learn more?

https://learning.oreilly.com/get-learning/?code=PPAER20

https://learning.oreilly.com/get-learning/?code=PPAER20

Thank you!

@berndruecker

mail@berndruecker.io
@berndruecker

https://berndruecker.io

https://medium.com/berndruecker

https://github.com/berndruecker

https://www.infoq.com/articles/events-
workflow-automation

Contact:

Slides:

Blog:

Code:

https://www.infoworld.com/article/3254777/
application-development/
3-common-pitfalls-of-microservices-
integrationand-how-to-avoid-them.html

https://thenewstack.io/5-workflow-automation-
use-cases-you-might-not-have-considered/

mailto:mail@berndruecker.io
https://berndruecker.io/
https://medium.com/berndruecker
https://github.com/berndruecker
https://www.infoq.com/articles/events-workflow-automation
https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

