
Progressive Delivery:
Patterns & Benefits Of Decoupling

Deploy From Release
Dave Karow

Continuous Delivery Evangelist, Split.io

@davekarow

The future is already here
— it's just not very evenly
distributed.

William Gibson

@davekarow

What is Progressive Delivery
and what are the potential benefits?

@davekarow@davekarow

Carlos Sanchez
(Sr. Cloud Software Engineer @ Adobe)

https://blog.csanchez.org/2019/01/22/progressive-delivery-in-kubernetes-blue-green-and-canary-deployments/

Progressive Delivery is the next step after Continuous Delivery,
where new versions are deployed to a subset of users
and are evaluated in terms of correctness and performance
before rolling them to the totality of the users
and rolled back if not matching some key metrics.

@davekarow

https://blog.csanchez.org/2019/01/22/progressive-delivery-in-kubernetes-blue-green-and-canary-deployments/

@davekarow

Origin story

@davekarow

“Well, when we’re rolling out services. What we do is
progressive experimentation because what really
matters is the blast radius. How many people will be
affected when we roll that service out and what
can we learn from them?”

Sam Guckenheimer, quoted in
https://www.infoq.com/presentations/progressive-delivery/

@SamGuckenheimer @monkchips
(James Governor)

https://www.infoq.com/presentations/progressive-delivery/

@davekarow

Origin story

@davekarow

@monkchips
(James Governor)

...a new basket of skills and technologies
concerned with modern software
development, testing and deployment.

Last Two Years:

Benefits of
Progressive
Delivery

Avoid Downtime
Limit the Blast Radius
Limit WIP / Achieve Flow
Learn During the Process

@davekarow

How You Roll Matters

@davekarow

Approach
Benefits

Blue/Green
Deployment

Canary Release
(container based)

Feature Flags Feature Flags +
Data, Integrated

Avoid
Downtime

Limit The
Blast Radius

Limit WIP /
Achieve Flow

Learn During
The Process

@davekarow
https://www.split.io/blog/learn-the-four-shades-of-progressive-delivery/
Harvey Balls by Sschulte at English Wikipedia [CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)]

https://www.split.io/blog/learn-the-four-shades-of-progressive-delivery/

9

Feature Flag
Progressive Delivery Example

0%

10%

20%

50%

100%

10

Multivariate example:Simple “on/off” example:

What a Feature Flag Looks Like In Code

treatment = flags.getTreatment(“related-posts”);

if (treatment == “on”) {

 // show related posts

} else {

 // skip it

}

treatment = flags.getTreatment(“search-algorithm”);

if (treatment == “v1”) {

 // use v1 of new search algorithm

} else if (feature == “v2”) {

 // use v2 of new search algorithm

} else {

 // use existing search algorithm

}

DON’T BELIEVE EVERYTHING YOU SEE...

“Can’t we just
change things

and monitor
what happens?”

New Release Metrics Change

DON’T BELIEVE EVERYTHING YOU SEE...

● Product changes
● Marketing campaigns
● Global Pandemics
● Nice Weather

New Release Metrics Change

Everything else in
the world

MEASURING CAUSALITY

Control Treatment

50% 50%

Measure
Release Impact

Decouple Deploy From Release
With Feature Flags

Automate Guardrails /
Do-No-Harm Metrics

● Incremental Feature Development for Flow
● Testing In Production
● Kill Switch (big red button)

● Alert on Exception / Performance Early In Rollout
● “Limit The Blast Radius” w/o Manual Heroics

● Iteration w/o Measurement = Feature Factory 😡
● Direct Evidence of Our Efforts → Pride 😎

● Take Bigger Risks, Safely
● Learn Faster With Less Investment

○ Dynamic Config
○ Painted Door

Test
to Learn

(A/B Test)

New! Uplevel Your Game

Top Image Attribution:
VillageHero from Ulm, Germany, CC BY-SA 2.0 <https://creativecommons.org/licenses/by-sa/2.0>, via Wikimedia Commons

Lessons Learned
From Those Who Have Gone Before Us

Lessons learned at LinkedIn
● Build for scale: no more coordinating over email

● Make it trustworthy: targeting and analysis must be rock solid

● Design for every team, not just data scientists

Ya Xu

Head of Data Science, LinkedIn

Decisions Conference 10/2/2018

@davekarow

Lessons learned at TVNZ OnDemand (paraphrased by Dave)
● Don’t Assign By Query: waiting for a static list takes too long!

● Do Assign On-The-Fly: randomize those who show up instead

● Don’t Analyze By Hand: waiting for results kills your cadence

Nathan Wichmann

Product Manager, TVNZ OnDemand

More from Nathan: split.io/customers/tvnz/

@davekarow

Checklists to Level Up:
● Three Foundational Capabilities
● Pattern: Release Faster With Less Risk
● Pattern: Engineer for Impact (Not Output)

@davekarow

Decouple deploy from release

❏ Allow changes of exposure w/o new deploy or rollback
❏ Support targeting by UserID, attribute (population), random hash

Foundational Capability #1

@davekarow

Automate a reliable and consistent way to answer,
“Who have we exposed this to so far?”

❏ Record who hit a flag, which way they were sent, and why
❏ Confirm that targeting is working as intended
❏ Confirm that expected traffic levels are reached

Foundational Capability #2

@davekarow

Automate a reliable and consistent way to answer,
“How is it going for them (and us)?”

❏ Automate comparison of system health (errors, latency, etc…)
❏ Automate comparison of user behavior (business outcomes)
❏ Make it easy to include “Guardrail Metrics” in comparisons to

avoid the local optimization trap

Foundational Capability #3

@davekarow

Limit the blast radius of unexpected consequences so you can replace the
“big bang” release night with more frequent, less stressful rollouts.

Build on the foundational capabilities to:
❏ Ramp in stages, starting with dev team, then dogfooding, then % of public
❏ Monitor at feature rollout level, not just globally (vivid facts vs faint signals)
❏ Alert at the team level (build it/own it)
❏ Kill if severe degradation detected (stop the pain now, triage later)
❏ Continue to ramp up healthy features while “sick” are ramped down or killed

Pattern: Release Faster With Less Risk

@davekarow

Focus precious engineering cycles on “what works” with experimentation,
making statistically rigorous observations about what moves KPIs (and what
doesn’t).

Build on the foundational capabilities to:
❏ Target an experiment to a specific segment of users
❏ Ensure random, deterministic, persistent allocation to A/B/n variants
❏ Ingest metrics chosen before the experiment starts (not cherry-picked after)
❏ Compute statistical significance before proclaiming winners
❏ Design for diverse audiences, not just data scientists (buy-in needed to stick)

Pattern: Engineer for Impact (Not Output)

@davekarow

Whatever you are, try to
be a good one.

William Makepeace Thackeray

@davekarow

Progressive Delivery
Resources
https://www.split.io/pd-in-wild-resources/

@davekarow

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

Q&A
@davekarow

linkedin.com/in/davekarow

split.io/blog

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

