
Stop punching yourself in the face!

Hannes Lowette



We need to talk …



What we do



The magpie

• Bird (black & white)
• Long tail
• Up to ~45cm long
• Wingspan up to ~60cm
• Omnivores
• Intelligent

(Rumoured to be…) 

• Attracted to shiny things



The software developer

• Human being (black/white/…)
• No tail
• Up to ~220cm tall
• No wings
• Omnivores
• Intelligent

(libraries, frameworks, architectures, …)

• Attracted to shiny things



Technology evolves

We chose this profession regardless …

Is this surprising?

No recipe for success



Our education …

Can you design and build a house?



We look for guidance

And we do as they do …



… until we run into a wall!



But why do we run 
into that wall?



Join me for an adventure with CHAD* …

* Any resemblance to actual persons, living or dead, 
or actual events is purely coincidental. 





The case



CHAD’s solution



What went wrong?

RavenDB
• € Per GB: pretty high
• Maintain the OS 
• Maintain the DB engine

The solution
• Took longer to write
• Breaks on file structure changes



What did CHAD forget?

Technical fit
Is this technology suitable to solve my problem?



Technical fit

Ask yourself questions such as:

• Does this help with our problem?
• How does it compare against competitors?
• Is there something that will help us more?
• Is this the simplest thing we can do?
• Does it bring unnecessary costs?
• Is there extra maintenance? 



Why did CHAD go wrong?

RavenDB is a database

 If you only use it for storage, it is expensive



What could CHAD have done?

Azure BLOB storage:
• Easy to set up
• No parsing required
• € per GB: very cheap
• Very robust (and easy to distribute)
• No maintenance needed





The case



CHAD’s solution

Agatha RRSL

• CHAD had experience with it
• Agatha in MVC

• Solved our issue
• In process (no overhead)
• But could move to ‘over 

WCF’

 Technical fit was OK



What went wrong?

Agatha:
• Mainly maintained by 1 person
• Maintenance stopped in 2013

 Agatha had become a liability



What did CHAD forget?

Check for 
warning signs
Can this technology become a risk?



Warning signs

Ask yourself questions such as:

• Who maintains this library?
• Are they still actively working on it?
• Is the source available? 
• What licensing model does it use?
• Has the product recently been 

acquired by another party?



What could CHAD have done?

MediatR:

• Similar functionality
• Open source, Apache license
• Actively maintained 

(by multiple people)





The case



CHAD’s solution

EventStore

 Technical fit was OK
 No warning signs



What went wrong?

The team:
• Juniors
• Remote contractors
• No EventStore knowledge

 The team never touched the EventStore stuff
CHAD was the only one who worked on that



What did CHAD forget?

Team skills
Can we get everyone up to speed on this?



Team skills

Ask yourself questions such as:

• Do we have the knowledge?
• If not, is the knowledge available?
• Can we teach the team?
• Can everyone work on it?
• What documentation do we need?



What could CHAD have done?

Spread the knowledge:

• Teach the team
• Write code together
• Write documentation
• Help others take their first steps





What happened

“We need to stop using 
Entity Framework”



EF frustrations

• Very slow
• Does too many things
• No control over SQL
• The SQL is very messy

 True, but …



What went wrong?

We used:
• SQL server profiler
• Query plan analyzer

We saw:
• DbContext initialization
• N+1 select
• Missing DB index
• Too many fields fetched



Until that day

Entity Framework was 
magic to CHAD



What did CHAD forget?

Take away the magic
Do you understand how it was built?



Take away the magic

Ask yourself questions such as:

• Do we know how it works?
• Do we understand how it was built?

• What did the developers use?
• What concepts are applied?
• Could we (theoretically) build our own?

• Do we know the effect of our usage?





The case



Their approach

• When CHAD learned 
• A better way
• A new framework
• An awesome library

• He explained it to the team:
• Presentation
• Pitfalls
• Tips & tricks

 From then on, 
they would do it like that!



What went wrong?

Old code stayed 
‘the old way’



What did CHAD forget?

Trim your stack
When new tech goes in, old stuff must go out!



Trim your stack

Ask yourself questions such as:

• What problem does this new tech solve?
• Do we really need that?
• Which old, similar, thing do we have?
• Can that be replaced by the new one?
• How much effort would that be?
• What effect does it have to keep booth?

• On maintenance
• On onboarding



What could CHAD have done?

“Hollow out the 
trunk”





The case



The solution

• Angular
• IdentityServer
• Docker & Kubernetes
• Microservices
• MongoDB

 All of this was new to them



What went wrong?

The team got stuck on:

• Learning the new stack
• Deployments
• Debugging
• MongoDB

The project got a huge delay

 Massive ‘team skills’ violation
 Over-engineered



Team skills - revisited

New skills in real projects:

• Don’t combine learning & delivery 
goals

• Budget extra time
• 1 at a time
• Explain the risk to the business

“This new way of doing things will make sure 
we can deliver more, with higher quality.”



What else did CHAD forget?

Evolving architecture
Architecture follows your problems, not the other way around!



Evolving architecture

KISS

• Start with the simplest solution
• Discover your needs from PROD
• Adapt to those needs, extract services

 You’ll have a working product WAY faster 



Microservices?

When?

• Scale independently
 Balance cost with speed

• Multiple clients
 Clients can adopt features at will

• Different technology stacks

• Conflicting dependencies



What could CHAD have done?

Let the architecture follow the needs

Start simple:
• ASP.NET & Angular (1 new thing)
• No microservices

Structure code to allow decoupling:
• SOLID
• Vertical slices

 Deliver your value!



Summary

1. Technical fit

2. Check for warning signs

3. Team skill

4. Take away the magic

5. Trim your stack

6. Evolving architecture



No really, who is CHAD?

• Me
• The whole team
• Someone else
• Totally made up

 He acted because he cared!

Carelessly or Helplessly Acting Developer



Wouldn’t it be better to be a …

RAD?

Responsibly Acting Developer



Are you on board with this mission?

1. Spread the word!

2. Follow us on Twitter: 
@RadCert

3. Take the quiz at
https://rad-cert.com 

4. Come find me later to
pick up your SWAG



Hannes Lowette

• Head of Learning & Development

• Competence Coach .NET

• Father of 3

• Amateur guitar builder

• LEGO® enthusiast

@hannes_lowette

#20086521



Questions?


